Table 2. Main interatomic distances (Å) and bond angles (°) in the atomic arrangement of Ag₃(NH₄)₃P₆O₁₈.H₂O

E.s.d.'s are given in parentheses.

The $P(1)_6O_{18}$ $P(1)$ O_{12} $O(L1)$ $\frac{1}{10}$ $O(L1)$ $\frac{1}{10}$ O(E11) $10O(E21)$ 10	ring anion D(<i>L</i> 1) 609 (<u>3)</u> 11-2 (1) 17-1 (1) 19-6 (1)	O(<i>L</i> 1 2·477 (<u>1·596 (</u> 110·1 (106·7 () (4) (3) (1) (2)	O(E11) 2·487 (4) 2·523 (4) <u>1·481 (3)</u> 120·4 (2)		O(E21) 2·528 (3) 2·473 (3) 2·573 (4) <u>1·485 (3)</u>
P(1)—P(1)	2.916 (1)					
P(1)O(L1)	P(1) 131	•0 (2)	P(1)	—P(1)—P(1)	110-36 (3)
The $P(2)_6O_{18}$	ring anion					
P(2) 0	D(L2)	O(L2)	O(E12)		O(E22)
O(L2) 1.	596 (2)	2.473 ((3)	2.538 (3)		2.471 (3)
$O(L2)$ $\overline{10}$	1.5(2)	1.599 ((2)	2.496 (3)		2.522 (3)
O(E12) 11	1.0 (2)	108.2 (2)	1.482 (2)		2.553 (4)
O(E22) 10	6·5 (2)	109.6	'n	118.7 (2)		1.486 (2)
P(2)—P(2)	2.907 (1)					
P(2)O(<i>L</i> 2)	·P(2) 131	•0 (2)	P (2)	—P(2)—P(2)	110.32 (3)
AgO ₅ polyhe	dron					
AgO(E11)	2.428 (2	2)	AgO(A	E21)	2.362	(2)
AgO(E12)	2.360 (3	3)	Ag-O(E22)	2.370	(2)
Ag-O(E22)	2.652 (3	3)		-		
(NH.)O. pol	vhedron	-				
	2.169 (4)	N O/F	11)	2 0 2 2	
N = O(LI)	3.126 (4	*)	$N \rightarrow O(E)$	11)	2.823	(4)
$N \rightarrow O(E11)$	3.334 (4	+)	N	21)	2.853	(4)
$N \rightarrow O(E21)$	3.298 (:)	N	2)	3.431	(4)
$N \rightarrow O(E12)$	2.934 (4	1)	$N \rightarrow O(E)$	22)	2 884	(3)
NO(<i>W</i>)	3.124 (4	4)				
The hydroge	n bonds					
Ň—H···	0 1	V—И	Н…О	N-O	N-	-н-о
N-H(IN)O	(E21) 0	-98 (8)	1.93 (8)	2.853 (4)	1	55 (5)
N-H(2N)O	(F22) 0	85 (6)	2.09 (6)	2.884 (3)	1	56 (9)
N_H(3N)O	(E11) 1	.02 (8)	1.83 (0)	2.823 (1)	1	65 (5)
N—H(4N)…O	(E12) 0	-94 (9)	2.08(9)	2.934 (4)	1	50 (5)
••••••••••••••••••••••••••••••••••••••	(~~~~ U	~ • • • • • •				JU 1 J J

Fig. 1. Projection of the atomic arrangement of Ag₃(NH₄)₃- P_6O_{18} , H_2O along the c axis. The H atoms have been omitted and the projection is restricted to -0.10 < z < 0.50.

References

AVERBUCH-POUCHOT, M. T. (1989a). Acta Cryst. C45, 539-540. AVERBUCH-POUCHOT, M. T. (1989b). Z. Kristallogr. 189, 17-23.

Enraf-Nonius (1977). Structure Determination Package. Version RSX11M. Enraf-Nonius, Delft, The Netherlands.

FISCHER, R. X. (1985). J. Appl. Cryst. 18, 258-262.

STOUT, G. H. & JENSEN, L. M. (1968). In X-ray Structure Determination, New York: Macmillan,

drawing was prepared using the STRUPLO program (Fischer, 1985).

Acta Cryst. (1991). C47, 932-936

Crystal Chemistry of cyclo-Hexaphosphates. XV. Structures of Sodium Ammonium cyclo-Hexaphosphate Dihydrate and Sodium Rubidium cyclo-Hexaphosphate Hexahydrate

BY M. T. AVERBUCH-POUCHOT AND A. DURIF

Laboratoire de Cristallographie, associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 4 June 1990; accepted 25 October 1990)

 $Na_2(NH_4)_4P_6O_{18}.2H_2O, M_r = 627.992,$ 2, $D_x = 2.022 \text{ Mg m}^{-3}$, $\lambda(\text{Ag } K\alpha) = 0.5608 \text{ Å}$, $\mu =$ Abstract. monoclinic, $P2_1/n$, a = 13.363 (7), b = 11.580 (12), c = 0.353 mm⁻¹, F(000) = 640, room temperature, final $= 6.809 (5) \text{ Å}, \beta = 101.87 (5)^{\circ}, V = 1031 (2) \text{ Å}^{3}, Z =$ R = 0.023for 3892 independent reflections.

0108-2701/91/050932-05\$03.00 © 1991 International Union of Crystallography

 $Na_4Rb_2P_6O_{18}.6H_2O, M_r = 844.16, triclinic, P\bar{1}, a =$ 7.532 (3), b = 9.752 (3), c = 8.730 (3) Å, $\alpha =$ 113.92 (4), $\beta = 102.29$ (4), $\gamma = 85.00$ (4)°, V = 572.7 (9) Å³, Z = 1, $D_x = 2.449$ Mg m⁻³, λ (Ag K α) $= 0.5608 \text{ Å}, \ \mu = 2.768 \text{ mm}^{-1}, \ F(000) = 412, \ \text{room}$ temperature, final R = 0.040 for 3352 independent reflections. In both compounds the P_6O_{18} ring anions are centrosymmetric and very significantly distorted with P-P-P angles varying from 95.33 to 141.71° as is commonly observed for such rings with \overline{I} internal symmetry. The three-dimensional cohesion between the rings involves interconnection of NaO_6 , NO_7 and NO_8 polyhedra in the case of the sodium ammonium salt and of NaO₆ and RbO₇ polyhedra for the sodium rubidium salt. Hydrogen atoms have been located and refined. Detailed hydrogen-bond schemes are reported. In addition, chemical preparations and unit-cell dimensions of Na₄Cs₂P₆O₁₈.6H₂O and Na₂Tl₄P₆O₁₈.2H₂O are given. The former compound is isotypic with the sodium rubidium salt, the latter with the sodium ammonium compound.

Introduction. Some mixed-alkali or mixed-alkalimonovalent cation *cyclo*-hexaphosphates have been previously reported by the authors. They correspond to two different types of stoichiometries for the associated cations: a 1/1 order is observed for $Li_3Na_3P_6O_{18}.12H_2O$ (Averbuch-Pouchot, 1989), $Li_3K_3P_6O_{18}.H_2O$ (Averbuch-Pouchot, 1989) and $Ag_3(NH_4)_3P_6O_{18}.H_2O$ (Averbuch-Pouchot, 1991); a 1/2 order is observed for $Ag_2Li_4P_6O_{18}.2H_2O$ (Averbuch-Pouchot & Durif, 1991).

In the present work we report two new structure types corresponding to this second type of order: Na₂(NH₄)₄P₆O₁₈.2H₂O and Na₄Rb₂P₆O₁₈.6H₂O. Two other compounds belonging to these structure types have been characterized: Na₄Cs₂P₆O₁₈.6H₂O, isotypic with the sodium rubidium salt, and Na₂-Tl₄P₆O₁₈.2H₂O, isotypic with the sodium ammonium salt. Their unit-cell dimensions are a = 7.653 (4), b = 9.959 (4), c = 8.740 (4) Å, $\alpha = 114.64$ (4), $\beta = 102.47$ (4), $\gamma = 84.94$ (4)° for the sodium caesium salt and a = 13.215 (8), b = 11.583 (18), c = 6.874 (8) Å, $\beta = 101.43$ (5)° for the sodium thallium salt.

Experimental. Crystals of the title compounds have been prepared by slow evaporation at room temperature of aqueous solutions of the alkali *cyclo*-hexaphosphates in the proper ratios. Crystals of Na₄Rb₂P₆O₁₈.6H₂O appear as stout triclinic prisms while those of Na₂(NH₄)₄P₆O₁₈.2H₂O are elongated monoclinic prisms. The sodium caesium salt, reported in the *Introduction*, was prepared by the same process while the sodium thallium compound was synthesized by evaporation at room temperature of an aqueous solution of sodium *cyclo*-hexaphosphate and thallium nitrate with a starting stoichiometry Na/Tl = 3/2.

Na₂(NH₄)₄P₆O₁₈.2H₂O. Crystal size: $0.48 \times 0.40 \times 0.32$ mm. Density not measured. Nonius CAD-4 diffractometer, graphite monochromator. 25 reflections ($11.0 < \theta < 15.0^{\circ}$) for refining unit-cell dimensions. ω scan, scan width 1.20° , variable scan speed $0.02-0.06^{\circ}$ s⁻¹, total background measuring time between 30 and 10 s. 3892 reflections collected ($2 < \theta < 30^{\circ}$), $\pm h$, k, l, $h_{max} = 23$, $k_{max} = 20$, $l_{max} = 12$. Two orientation ($\overline{573}$ and $\overline{10.5}$.1) and two intensity ($57\overline{3}$ and $\overline{573}$) control reflections, measured every 2 h without any significant variation. Lorentz and polarization corrections, no absorption correction.

Na₄Rb₂P₆O₁₈.6H₂O. Crystal size: $0.18 \times 0.30 \times 0.40$ mm. Density not measured. Philips PW1100 diffractometer, graphite monochromator. 20 reflections ($10.0 < \theta < 15.0^{\circ}$) for refining unit-cell dimensions. $\omega/2\theta$ scan, scan width 1.20° , scan speed 0.03° s⁻¹, total background measuring time 6 s. 4967 reflections collected ($3 < \theta < 30^{\circ}$), $\pm h$, $\pm k$, l, $h_{max} = 13$, $k_{max} = 16$, $l_{max} = 14$. 4685 independent reflections after averaging Friedel pairs ($R_{int} = 0.019$). Two orientation and intensity reference reflections ($\overline{440}$ and $4\overline{70}$) measured every 2 h without any significant variation. Lorentz and polarization corrections, no absorption correction.

The two crystal structures were solved using the same strategy: heavy atoms located by direct methods (MULTAN77; Main, Lessinger, Woolfson, Germain & Declercq, 1977) and successive Fourier syntheses. H atoms located by difference Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F), isotropic for H atoms. Unit weights. Scattering factors for neutral atoms and f', f" from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAX II. In both cases no secondary-extinction correction. Final refinement cycles for $Na_2(NH_4)_4$ - P_6O_{18} .2 H_2O with 3892 reflections (no rejection). Final R = 0.023 (wR = 0.031), S = 0.613, max. Δ/σ =0.05, max. peak height in the final difference Fourier synthesis = $0.462 \text{ e} \text{ Å}^{-3}$. Final refinement cycles for Na₄Rb₂P₆O₁₈.6H₂O with 3352 reflections [I > $3\sigma(I)$]. Final R = 0.040 (wR = 0.044), S = 1.063, max. $\Delta/\sigma = 0.01$, max. peak height in the final difference Fourier synthesis = $0.895 \text{ e} \text{ Å}^{-3}$.

Tables 1 and 2 list the final atomic coordinates for these two structures.*

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53686 (62 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final atomic coordinates and B_{eq}/B_{iso} values for Na₂(NH₄)₄P₆O₁₈.2H₂O

H	atoms	were	refined	isotropically. parentheses.	E.s.d.'s	are	given	in
			R =	$= (4/3) \sum \sum B$	a			

Table	3. <i>N</i>	Main	int	terato	mic	disi	tances	(Å)	and
bond	angles	(°)	in	the	ator	nic	arrang	gement	of
		Na	N	H₄)₄P	6O18	$2H_2$	0		•

E.s.d.'s a	re given	in pa	rentheses.
------------	----------	-------	------------

			ı m ı • • • j•	
	x	У	z	$B_{eq}/B_{iso}(\text{\AA}^2)$
P(1)	0.34893 (2)	0.46059 (3)	0.17916 (5)	1.227 (4)
P(2)	0.64252 (2)	0.33170 (3)	0.04981 (5)	1.284 (4)
P(3)	0.48112 (2)	0.25573 (3)	0.25302 (5)	1.279 (4)
Na	0.21742 (4)	0.20204 (5)	0.07810 (8)	1.543 (8)
N(1)	0.3615 (1)	0.3627 (1)	0.6722 (2)	2.55 (2)
N(2)	0.4228 (1)	0.9419 (1)	0.2449 (2)	2.45 (2)
O(E11)	0.19563 (8)	0.01024 (9)	0.1591 (2)	2.07 (2)
O(E12)	0.21796 (8)	0.89388 (9)	0.4819 (2)	1.89 (2)
O(L12)	0.40730 (7)	0.55918 (8)	0.0805 (2)	1.67 (1)
O(L13)	0.05342 (7)	0.88645 (8)	0.2186 (2)	1.81 (2)
O(E21)	0.30563 (8)	0.74226 (9)	0.0757 (2)	1.97 (2)
O(E22)	0 30041 (8)	0.6299 (1)	0.7528 (2)	2.32 (2)
O(L23)	0.03826 (7)	0.23126 (9)	0.5683 (2)	1.73 (1)
O(E31)	0.44628 (8)	0.7746 (1)	0.5604 (2)	2.25 (2)
O(E32)	0.39182 (7)	0.18145 (8)	0.1808 (2)	2.09 (2)
O(W)	0.3760 (1)	-0.0035 (1)	0.7902 (2)	3.65 (3)
H(N11)	0.338 (2)	0.365 (3)	0.807 (5)	3.8 (7)
H(N12)	0.428 (2)	0.343 (3)	0.685 (5)	3.4 (7)
H(N13)	0.319 (2)	0-313 (3)	0.593 (5)	3.6 (7)
H(N14)	0.154 (3)	0.924 (3)	0.898 (5)	4.6 (8)
H(N21)	0.069 (2)	0.399 (3)	0.139 (5)	3.4 (7)
H(N22)	0.479 (2)	0.953 (3)	0.225 (5)	4.0 (7)
H(N23)	0.113 (2)	0.501 (3)	0.237 (5)	3.8 (7)
H(N24)	0.384 (2)	0-897 (3)	0.175(5)	3.7 (7)
H(1W)	0.178 (3)	0.553 (3)	0.718 (5)	4.5 (8)
H(2W)	0.157 (3)	0.452 (3)	0.812(5)	4.6 (8)

Table 2. Final atomic coordinates and B_{eq}/B_{iso} values for Na₄Rb₂P₆O₁₈.6H₂O

H atoms were refined isotropically. E.s.d.'s are given in parentheses. $B_{eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	· y	Z	$B_{\rm eq}/B_{\rm iso}({\rm \AA}^2)$
Rb	0.24345 (5)	0.37992 (4)	0.84913 (4)	2.153 (6)
P(1)	0.0750 (1)	0.24108 (8)	0.13752 (9)	1.03 (1)
P(2)	0.7412 (1)	0.88303 (8)	0.61883 (9)	1.15 (1)
P(3)	0.2429 (1)	0.80028 (8)	0.12834 (9)	1.04 (1)
Na(1)	0.5352 (2)	0.2863 (2)	0.2214 (2)	1.81 (3)
Na(2)	0.1511 (2)	0.8597 (2)	0.5250 (2)	$2 \cdot 21(3)$
O(E11)	0.7600 (3)	0.7884 (3)	0.9380 (3)	1.67 (4)
O(E12)	-0.0182 (4)	0.6013 (3)	0.7729 (3)	1.71 (4)
O(L12)	0.0860 (3)	0.1553 (2)	0.2615 (3)	1.40 (4)
O(L13)	0.0911 (3)	0.8521 (3)	0.0036 (3)	1.50 (4)
O(L23)	0.3316 (3)	0.9614 (2)	0.2529 (3)	1.34 (4)
O(E21)	0.8168 (4)	0.9068 (3)	0.4883 (3)	1.81 (4)
O(E22)	0.5937 (4)	0.7737 (3)	0.5698 (3)	1.99 (5)
O(E31)	0.1556 (4)	0.7386 (3)	0.2239 (3)	1.80 (4)
O(E32)	0.6150 (3)	0.2883 (3)	0.9660 (3)	1.91 (5)
O(W1)	0.3327 (4)	0.9537 (3)	0.8047 (3)	2.02 (5)
O(W2)	0.5511 (4)	0.4669 (3)	0.7129 (4)	2.47 (6)
O(W3)	0.1936 (4)	0.6218 (3)	0.5519 (3)	2.23 (5)
H(1W1)	0.31 (1)	0.017 (8)	0.886 (9)	3 (2)
H(2W1)	0.41 (1)	0.017 (9)	0.81(1)	5 (2)
H(1W2)	0.490 (9)	0.604 (7)	0.370 (8)	$\frac{1}{2}$ (1)
H(2W2)	0.37 (1)	0.609 (8)	0.286 (9)	$\frac{1}{3}(2)$
H(1W3)	0.188 (9)	0.545 (7)	0.453 (8)	3 (2)
H(2W3)	0.14 (1)	0-586 (8)	0.616 (9)	4 (2)

Discussion. The main interest of these two atomic arrangements is the geometry of the common cyclic phosphoric group, P_6O_{18} . Up to now, only 28 accurate structure determinations of *cyclo*-hexaphosphates have been performed. In these arrangements, the phosphoric ring anion can adopt various internal symmetries $(3, \overline{3}, m, 2/m)$, but in more than 50% of cases (18) the internal symmetry is $\overline{1}$. The centrosymmetric P_6O_{18} groups are always very distorted, with

	The P_6O_{18} ri	ing anion					
	P(1) = P(1) O(E11) O(E12)	O(<i>E</i> 11) <u>1·472 (1)</u> <u>118·83 (6)</u>	O(E12) 2·543 (1) <u>1·482 (1)</u>	-	O(<i>L</i> 12) 2·522 (2) 2·521 (1)	0 2·4 2·5	(<i>L</i> 13) 79 (1 37 (1
	O(L12) O(L13)	109·95 (6) 107·69 (6)	109-38 (6 110-89 (6	5) 5)	<u>1·606 (1)</u> 98·11 (5)	2.4 <u>1.5</u>	20 (1) 97 (1)
	P(2)O₄ tetra	hedron					
	P(2)	O(L12)	O(L23)		O(<i>E</i> 21)	0	(E22)
	O(L12) O(L23)	97.66 (5)	1.600 (1)	2	2·313 (1) 2·484 (1)	2.5	36 (1)
	O(E21)	109.06 (6)	107.49 (6	<u>, , , , , , , , , , , , , , , , , , , </u>	479 (1)	2.5	44 (2)
	O(<i>E</i> 22)	110-15 (6)	111-21 (6	i) ī	19.11 (6)	1-4	71 (1)
	P(3)O ₄ tetral	hedron					
	P(3)	O(L13)	O(L23)		O(E31)	0	(<i>E</i> 32)
	O(L13) O(L23)	$\frac{1.606(1)}{101.56(6)}$	2·489 (2) 1·607 (1)	2	2·460 (1)	2.5	61 (1)
	O(E31)	105.98 (6)	111.25 (6	5 Î	.473 (1)	2.5	45 (2)
	O(E32)	110.98 (5)	106·06 (e	j) 1	19.58 (7)	<u>1·4</u>	71 (1)
	P(1)—P(2)	2.8820) (5)	P(1)-O(L	12)—P(2)	127-46	5 (6)
	P(1)—P(3)	2.9393	3 (4)	P(1)-O(L	13)—P(3)	133-12	2 (6)
	P(2) - P(3)	2.92/2	2 (5)	P(2)O(<i>L</i> .	23)—P(3)	131-7	5 (6)
	P(2)—P(1)—P P(1)—P(2)—P	r(3) 132.63 r(3) 128.45	3 (2) 5 (1)	P(1)—P(3)-	—P(2)	98.73	3 (1)
	NaO ₆ polyhe	edron					
	Na-O(E11)	2.322 (1))	Na-O(E3	1)	2·352 (1)	
	Na - O(E12) Na - O(E21)	2·449 (1) 2·483 (1))	NaO(E3) NaO(E2)	2) 2)	2·304 (1) 2·368 (1)	
	N(1)O- poly	hedron			_,	(-)	
l	N(1) = O(E(1))	2-808 (2)	`	N(1)	12)	2,700 (2)	
	N(1)-O(E22)	3.276 (2)	,)	N(1) - O(L)	12)	3.325 (2)	
	N(1)-O(L23)	3.379 (2))	N(1)-O(L	13)	3-113 (2)	
	N(1) - O(E21)	2.870 (2))				
	N(2)O ₈ poly	hedron					
	N(2) = O(W) N(2) = O(W)	2.839 (2)		N(2) - O(E)	31)	2·863 (2)	
	N(2) - O(E21)	2.895 (2)		N(2) - O(E)	32)	2.826(2)	
	N(2)-O(E12)	3.496 (2))	N(2)-O(E	11)	3·074 (2)	
	The hydroge	en bonds					
	O(N)H	I…O	O(N)—H	H…O	O(N)C) O(N)—	н…с
	N(1)—H(N11)	····O(<i>E</i> 12)	1.03 (3)	1.78 (3)	2.779 (2)	168 (3)
	N(1) - H(N12) N(1) - H(N13)	(0(L12))	0.90 (3)	2.69 (3)	3.325 (2)	128 (2)
	N(1) - H(N14)	0(E21)	0.86 (3)	2.01 (3)	2.870(2) 2.808(2)	154 (3)
	N(2)-H(N21)	····O(E31)	0·93 (3)	1.96 (3)	2.863 (2)	166 (3)
	N(2)—H(N22)	····O(<i>W</i>)	0.80 (3)	2.05 (3)	2.839 (2)	170 (3)
	N(2) = H(N/23)	(E_{22})	0.80 (3)	2·17 (3) 2·11 (3)	2.895 (2)	133 (3) 3)
	O(W)-H(1W))···O(<i>E</i> 22)	0.97 (3)	1.84 (3)	2.784 (2)	166 (3)
	O(W)—H(2W))…O(<i>E</i> 12)	0.90 (3)	2.06 (3)	2.908 (2)	155 (3)

P—P—P angles varying from 88 to 143°, while for the other internal symmetries they do not depart significantly from an average value of 109°. In the two atomic arrangements described in the present work the P_6O_{18} ring anions are also centrosymmetric and again very distorted: 98.73 < P—P—P < 132.63° for the sodium ammonium salt and 95.33 < P—P—P < 141.71° for the sodium rubidium salt.

The great flexibility of the P_6O_{18} ring can probably partly explain the very good stability of *cyclo*-hexaphosphates. Tables 3 and 4 report the main interatomic distances and bond angles in the two P_6O_{18} Table 4. Main interatomic distances (Å) and bond angles (°) in the atomic arrangement of Na₄Rb₂P₆O₁₈.6H₂O

E.s.d.'s are given in parentheses.

The P ₆ O ₁₈ rin	g anion				
P(1)O₄ tetrah	edron				
P(1)	O(E11)	O(E12)	0(L12)	O(L13)
O(E(1))	1.482 (3)	2.562 (3)	2.5	36 (4)	2.512 (3)
O(E12)	119-2 (2)	1.487 (2)	2.5	08 (4)	2.523 (3)
O(L12)	110.6 (2)	108.5 (1)	1.6	01 (3)	2.389 (3)
O(L13)	109-4 (1)	109.9 (1)	96	·8 (1)	<u>1·594 (2)</u>
P(2)O. tetrah	edron				
$\Gamma(2)O_4$ (clian	0(112)	0(123)	0	(E21)	O(E22)
P(2)	1.605 (2)	2.517(3)	2.4	47 (4)	2.533 (3)
O(L12)	$\frac{1005(2)}{1030(1)}$	1.611(2)	2.5	44 (3)	2.455 (3)
O(E23)	104.9 (1)	110.8 (1)	1.4	80 (3)	2.579 (4)
O(E22)	110.4 (2)	105-1 (1)	12	1.3(1)	1.479 (3)
P(3)O. tetrah	edron				
D(2)	0(112)	0(123)	0	(F31)	O(E32)
P(3)	1.602 (3)	2:437 (5)	2.5	29 (4)	2.460 (4)
O(L13)	$\frac{1002(3)}{08.7(2)}$	1.608 (2)	2.5	43 (5)	2.478 (4)
0(123)	$\frac{100}{11001}$ (1)	$\frac{1000(2)}{110.5(1)}$	1.4	84 (3)	2.522 (3)
O(E31) O(E32)	109.5 (1)	106-2 (1)	n	9.7 (2)	1 485 (3)
-()			B/11 0/110	D (2)	120 1 (1)
P(1)—P(2)	2.907 (1)	P(1) = O(L12)	P(2)	130.1 (1)
P(1)P(3)	2.885 (1)	P(1) = O(L13)	P(3)	1251 (2)
P(2)P(3)	2.975 (1)	P(2) = O(L23))—P(3)	133.1 (2)
P(2) - P(1) - P(1)	(3) 141.71 (4)			
P(1)—P(2)—P	(3) 95-33 (3)	P(1)—P(3)—	P(2)	109.41 (3)
RbO ₂ polyhe	dron				
	2.041 (3)		Rb=O(E31)	3.157	7 (3)
Rb = O(E12)	2.941 (3)		Rb - O(E32)	2.959	ə (2)
Rb = O(E12)	3.110 (2)		Rb - O(E32)	3.13	7 (2)
$R_{0} = O(E_{2}T)$	3.136 (4)				X -7
K0-0(#2)	5 150 (4)				
Na(1)O ₆ pol	yhedron			a) 2 40	4 (2)
Na(1) - O(E1)) 2.356 (3)		$Na(1) \rightarrow O(W)$	(1) 2.404	4 (3)
$Na(1) \rightarrow O(E22)$	2.515(3)		Na(1) = O(W)	Z) 2·30-	4 (<i>3</i>)
$Na(1) \rightarrow O(E32)$	2) 2.438 (4)		$\operatorname{INa}(1) \longrightarrow O(W)$	5) 2.40	0 (3)
Na(2)O ₆ pol	yhedron				
Na(2)-O(L12	2) 2.892 (3)		Na(2)—O(E	31) 2.41	3 (3)
Na(2)-O(E2)	l) 2·495 (3)		Na(2)—O(#	'l) 2·37	8 (3)
Na(2)-O(E2	l) 2·363 (3)		Na(2)—O(14	⁷ 3) 2·41	2 (4)
The hydrog	en bo n ds				
0—Н	···O	O—H	H…O	00	O—H…O
O(W1)H(1	V)O(E11)	0.78 (6)	2.00 (6)	2.764 (3)	166 (9)
$O(W_1) - H(2)$	$V_{1} \cdots O(L_{23})$	0.87 (9)	2.17 (9)	2.929 (4)	145 (6)
$O(W^2) - H(1)$	$W^{2}) \cdots O(E^{2})$	0.80 (5)	1.92 (5)	2.719 (3)	179 (6)
$O(W^2) - H(2)$	$W_2) \cdots O(E_{31})$	0.89 (7)	2.11(8)	2.968 (4)	163 (6)
$O(W_3) - H(1)$	W3)O(E12)	0.88 (5)	2.13 (6)	2.902 (3)	147 (6)
$O(W^3) - H(2)$	W3)O(E12)	0.95 (9)	1.94 (9)	2.826 (5)	155 (6)
2(-, -(/		• •		

ring anions observed in the title compounds. Apart from the distortion of the rings, the other geometrical features measured here are those commonly observed in all condensed phosphoric anions.

In the case of the sodium ammonium salt the phosphoric rings are interconnected in a threedimensional way by distorted NaO₆ octahedra and NO₇ and NO₈ polyhedra while for the sodium rubidium compound this cohesion involves interconnection of RbO₇ polyhedra and distorted NaO₆ octahedra.

In the first of these compounds the Na—O distances vary from 2.304 to 2.483 Å and the NaO₆ polyhedron does not include any O(L) bonding oxygen atom. Within 3.5 Å the first ammonium

group has seven neighbors with N(1)—O distances ranging from 2.799 to 3.379 Å while the second ammonium group has an eightfold coordination involving six oxygen atoms and two water molecules with N(2)—O distances varying from 2.826 to 3.496 Å.

For the sodium rubidium salt the two sodium atoms are coordinated by six oxygen atoms building distorted octahedra, with Na—O distances ranging from 2.304 to 2.515 Å for Na(1) and from 2.363 to 2.495 Å for Na(2). Within 3.5 Å the rubidium atom has seven neighbors with 2.941 < Rb—O < 3.157 Å.

It is to be noticed that in both compounds some bonding oxygens [O(L)] take part in the coordination polyhedra of the associated cations, a feature not

Fig. 1. Projection of the atomic arrangement of $Na_2(NH_4)_4$ - $P_6O_{18}.2H_2O$ along the *c* axis.

Fig. 2. Projection of the atomic arrangement of $Na_{4}Rb_{2}P_{6}O_{18}.6H_{2}O$ along the *a* axis.

frequently observed in condensed phosphate chemistry. Main interatomic distances in these various

polyhedra are given in Tables 3 and 4 which also

report the main geometrical features of the two

Fig. 1 is a projection along the c axis of the

sodium ammonium salt and Fig. 2 a projection along

the *a* axis of the sodium rubidium compound. In

both figures, the hydrogen atoms have been omitted.

The drawings were prepared using the STRUPLO

three-dimensional hydrogen-bond schemes.

References

AVERBUCH-POUCHOT, M. T. (1989). Z. Anorg. Allg. Chem. 574, 225–234.

AVERBUCH-POUCHOT, M. T. (1991). Acta Cryst. C47, 930-932.

AVERBUCH-POUCHOT, M. T. & DURIF, A. (1991). Acta Cryst. In the press.

Enraf-Nonius (1977). Structure Determination Package. Version RSX11M. Enraf-Nonius, Delft, The Netherlands.

FISCHER, R. X. (1985). J. Appl. Cryst. 18, 258-262.

MAIN, P., LESSINGER, L., WOOLFSON, M. M., GERMAIN, G. & DECLERCQ, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1991). C47, 936–938

program (Fischer, 1985).

Structure of Mixed-Valent Titanium Silicophosphates, KTi₃P₆Si₂O₂₅ and CsTi₃P₆Si₂O₂₅

BY A. BENMOUSSA, M. M. BOREL, A. GRANDIN, A. LECLAIRE* AND B. RAVEAU

Laboratoire de Cristallographie et Sciences des Matériaux, CRISMAT, ISMRa, Boulevard du Maréchal Juin, 14050 Caen CEDEX, France

(Received 12 November 1989; accepted 25 October 1990)

Abstract. KTi₃P₆Si₂O₂₅, $M_r = 824.80$, trigonal, $P\overline{3}1c$, a = 8.2648 (9), c = 17.038 (1) Å, V = 1007.9 (3) Å³, Z = 2, $D_x = 2.72 \text{ Mg m}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.71073 \text{ Å}$, μ $= 2.07 \text{ mm}^{-1}$, F(000) = 403, T = 294 K, R = 0.036, wR = 0.043 for 1438 reflections with $I > 3\sigma(I)$ out of 4577 unique reflections measured. CsTi₃P₆Si₂O₂₅, M_r trigonal, $P\overline{3}1c$, a = 8.2145(6), c == 918.60, 17·249 (1) Å, $V = 1008 \cdot 0$ (2) Å³, $D_x =$ Z = 2, 3.03 Mg m⁻³, λ (Mo K α) = 0.71073 Å, μ = 3.63 mm⁻¹, F(000) = 439, T = 294 K, R = 0.034, wR = 0.039 for 1655 reflections with $I > 3\sigma(I)$ out of 4547 unique reflections measured. The 'Ti₃P₆Si₂O₂₅' host lattice is built up from corner-sharing TiO₆ octahedra and PO₄ and SiO₄ tetrahedra, which form wide tunnels in which the K or Cs ions are located. In the titanium and molybdenum silicophosphates, the thermal motion of the A ion in the tunnel increases rapidly as the difference between the A-O length and the sum of the ionic radii increases.

Introduction. During the investigation of the system A-Mo-P-Si-O, the silicomolybdenophosphates $AMo_3P_6Si_2O_{25}$ (A = K, Rb, Tl, Cs) (Leclaire, Borel, Grandin & Raveau, 1985; Leclaire, Monier & Raveau, 1984, 1985), MoP_3SiO_{11} (Leclaire & Raveau, 1987), Mo_4P_6Si_2O_{25} (Leclaire, Lamire & Raveau, 1988) and Mo_2P_4Si_4O_{23} (Leclaire, Borel,

0108-2701/91/050936-03\$03.00

Grandin & Raveau, 1989) were isolated. The oxides $AMo_{3}P_{6}Si_{2}O_{25}$ exhibit a particular behaviour with respect to the valency of molybdenum. This latter element is characterized here by mixed valency (Mo^{III}-Mo^{IV}) which cannot lead to electronic delocalization since the MoO_6 octahedra are isolated, *i.e.* are linked to each other through PO₄ tetrahedra. From the crystal structure, it appears that two sites are available for molybdenum, Mo(1) located within the layers and Mo(2) bridging the layers. The number of sites suggests that they are occupied in an ordered way by Mo^{IV} and Mo^{III} respectively, according to the formula $AMo_2^{IV}Mo^{III}P_6Si_2O_{25}$. However, an examination of the Mo-O bond lengths shows clearly that this type of ordering of Mo^{IV} and Mo^{III} does not exist. Thus, although the Mo(1)-O distances are longer than the Mo(2)-O distances, indicating that the valency of Mo(2) is greater than that of Mo(1), the mean length of the Mo(1)—O bonds is intermediate between that of the Mo(2)—O bonds and the mean values of the Mo^{III}-O bonds observed for MoP₃SiO₁₁ and Mo₄P₆Si₂O₂₅. This leads to the conclusion that molybdenum exhibits a mixed valency, Mo^{III}-Mo^{IV}, within the Mo₂P₆Si₂O₂₅ layers whereas it is tetravalent between these layers. In order to determine whether this phenomenon could be generalized to the other $AM_3P_6Si_2O_{25}$ members of the series, the crystal growth of silicophosphates of titanium was undertaken. We report here

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.